Skip to main content

Signal Electromigration (Signal EM): Violations, Examples, and Practical Fixes

  Hello Dear Readers,   Today in this post, I will provide some deep insight into the Signal Electromigration (Signal EM): Violations, Examples, and Practical Fixes. 1. Introduction: As technology nodes shrink into the deep‑submicron and nanometer regime (7nm, 5nm, 3nm and beyond), electromigration (EM) has become a first‑order reliability concern—not only for power/ground (PG) networks but also for signal nets. Signal EM failures are often underestimated because signal currents are transient and bidirectional. However, with higher switching activity, tighter metal pitches, thinner wires, and aggressive timing closure, signal EM can cause latent or early‑life failures if not addressed properly. This article explains: What Signal EM is and how it differs from PG EM Typical Signal EM violation scenarios Detailed, practical examples Root causes behind each violation Proven solutions and best practices to fix and prevent Signal EM issues 2. What is Signal Electromigration: El...

Carry Lookahead Adder Design And Implementation of Generic Parametrized Adder Using Verilog HDL

 Hello Dear Readers,

Today In this post I have designed a carry-lookahead adder design and implemented its parametrized version using Verilog HDL and analysis that design for the desire output. First of all, I have designed CLA based on the theory described in the below video of the Neso Academy.
     


Verilog Code:
module add (a, b, c, g, p, s); // adder and g, p
input a, b, c; // inputs: a, b, c;
output g, p, s; // outputs: g, p, s;
assign s=a ^ b ^ c; // output: sum of inputs
assign g = a & b; // output: carry generator
assign p = a | b; // output: carry propagator
endmodule

module gp (g,p,c_in,g_out,p_out,c_out); // carry generator, carry propagator
input [1:0] g, p; // lower level 2-set of g, p
input c_in; // lower level carry_in
output g_out,p_out,c_out; // higher level g, p, carry_out
assign g_out = g[1] | p[1] & g[0]; // higher level carry generator
assign p_out = p[1] & p[0]; // higher level carry propagator
assign c_out = g[0] | p[0] & c_in; // higher level carry_out
endmodule

module cla_2 (a, b, c_in, g_out, p_out, s); // 2-bit carry lookahead adder
input [1:0] a, b; // inputs: a, b
input c_in; // input: carry_in
output g_out, p_out; // outputs: g, p
output [1:0] s; // output: sum
wire [1:0] g, p; // internal wires
wire c_out; // internal wire
// add (a, b, c, g, p, s); // generates g,p,s
add a0 (a[0], b[0], c_in, g[0], p[0], s[0]); // add on bit 0
add a1 (a[1], b[1], c_out, g[1], p[1], s[1]); // add on bit 1
// gp (g, p, c_in, g_out, p_out, c_out); // higher level g,p
gp gp0 (g, p, c_in, g_out, p_out, c_out); // higher level g,p
endmodule

module cla_4 (a,b,c_in,g_out,p_out,s); // 4-bit carry lookahead adder
input [3:0] a, b; // inputs: a, b
input c_in; // input: carry_in
output g_out, p_out; // outputs: g, p
output [3:0] s; // output: sum
wire [1:0] g, p; // internal wires
wire c_out; // internal wire
cla_2 a0 (a[1:0],b[1:0],c_in, g[0],p[0],s[1:0]); // add on bits 0,1
cla_2 a1 (a[3:2],b[3:2],c_out,g[1],p[1],s[3:2]); // add on bits 2,3
gp gp0 (g,p,c_in, g_out,p_out,c_out); // higher level g,p
endmodule

module cla_8 (a,b,c_in,g_out,p_out,s); // 8-bit carry lookahead adder
input [7:0] a, b; // inputs: a, b
input c_in; // input: carry_in
output g_out, p_out; // outputs: g, p
output [7:0] s; // output: sum
wire [1:0] g, p; // internal wires
wire c_out; // internal wire
cla_4 a0 (a[3:0],b[3:0],c_in, g[0],p[0],s[3:0]); // add on bits 0-3
cla_4 a1 (a[7:4],b[7:4],c_out,g[1],p[1],s[7:4]); // add on bits 4-7
gp gp0 (g,p,c_in, g_out,p_out,c_out); // higher level g,p
endmodule

module cla_16 (a,b,c_in,g_out,p_out,s); // 16-bit carry lookahead adder
input [15:0] a, b; // inputs: a, b
input c_in; // input: carry_in
output g_out, p_out; // outputs: g, p
output [15:0] s; // output: sum
wire [1:0] g, p; // internal wires
wire c_out; // internal wire
cla_8 a0 (a[7:0], b[7:0], c_in, g[0],p[0],s[7:0]); // add on bits 0-7
cla_8 a1 (a[15:8],b[15:8],c_out,g[1],p[1],s[15:8]); // add on bits 8-15
gp gp0 (g,p,c_in, g_out,p_out,c_out); // higher level g,p
endmodule

module CLA_32(a,b,c_in,g_out,p_out,s);
input [31:0] a, b; // inputs: a, b
input c_in; // input: carry_in
output g_out, p_out; // outputs: g, p
output [31:0] s; // output: sum
wire [1:0] g, p; // internal wires
wire c_out; // internal wire
cla_16 a0 (a[15:0], b[15:0], c_in, g[0],p[0],s[15:0]); // + bits 0-15
cla_16 a1 (a[31:16],b[31:16],c_out,g[1],p[1],s[31:16]); // + bits 16-31
gp gp0 (g,p,c_in,g_out,p_out,c_out);
endmodule

module cla32 (a,b,ci,s); // 32-bit carry lookahead adder, no g, p outputs
input [31:0] a, b; // inputs: a, b
input ci; // input: carry_in
output [31:0] s; // output: sum
wire g_out, p_out; // internal wires
CLA_32 cla (a, b, ci, g_out, p_out, s); // use cla_32 module
endmodule

Simulational Results:




Parametrized Version Verilog Code:
module carry_lookahead_adder(A,B,S,Cout,Cin);
    parameter N = 4;
    
    input [N-1:0]A,B;
    input Cin;
    output [N-1:0]S;
  output Cout;

    wire [N-1:0]P, G ;
    wire [N:0]C;
    propagate_generate #(.N(N)) M1(.A(A), .B(B), .P(P), .G(G));
    carry_generate #(.N(N)) M2 (.P(P), .G(G), .C(C), .Cin(Cin));

    assign S = P ^ C;
    assign Cout = C[N];

endmodule


module propagate_generate(A,B,P,G);
    parameter N = 4;
    input [N-1 :0] A,B;
    output [N-1 :0]P,G;

    assign P = A^B;
    assign G = A&B;

endmodule


module carry_generate(P,G,C,Cin);
    parameter N = 4;
    input [N-1:0]P,G;
  input Cin;
    output [N:0]C;
    assign C[0] =Cin;
    genvar i;
  generate for(i=1;i<=N;i=i+1) begin
        assign C[i] = G[i-1] | (P[i-1]&C[i-1]);
    end
    endgenerate

endmodule


Test Bench Verilog Code:

module tb;
    reg [2:0]A,B;
    wire [2:0]S;
    reg Cin;
    wire Cout;

    carry_lookahead_adder #(.N(3)) DUT(.A(A), .B(B), .S(S), .Cout(Cout), .Cin(Cin));


    task load(input [2:0]a,b, input c); begin
        A = a;
        B = b;
      Cin = c;    
    end
    endtask

    integer i , j,k;
    initial begin
        $dumpfile ("carry_lookahead_adder.vcd");
        $dumpvars (0, tb);  
        for (k=0;k<2;k=k+1) begin
            for (i=0; i<8 ; i=i+1) begin
                for(j=0;j<8;j=j+1) begin
                    load(i,j,k);
                    #10;
                end
            end
        end
        $finish;
    end
    initial $monitor("A = %b, B = %b, Cin = %b, Cout = %b, Sum = %b",A,B,Cin,Cout,S);

endmodule

Simulational Results:


If you want to implement its entire RTL to GDSII then refer to the below articles series.




Comments

Post a Comment

Popular posts from this blog

Exploring the Role of LEF Files in VLSI Chip Design: A Beginner's Guide

Hello Dear Readers,   Today in this post, I will provide some deep insight into the LEF file role during the VLSI Chip Design process. In VLSI (Very Large Scale Integration) design, a LEF file is a file that contains information about the physical geometry of the standard cells used in a circuit. LEF stands for Library Exchange Format. A standard cell is a pre-designed logic cell that contains a specific function, such as a flip-flop or an AND gate. Standard cells are designed to be easily combinable and scalable to create more complex circuits. The physical geometry of each standard cell is defined in the LEF file. The LEF file contains information such as the width, height, and position of the pins and metal layers of each standard cell. It also contains information about the physical design rules that govern the placement of these cells on the chip. LEF files are important in VLSI design because they enable the interoperability of different design tools from different vend...

Best Book for Designing Microarchitecture of Microprocessor Using Verilog HDL

  Hello Dear Readers, Currently, after succeeding in many topics now I starting to provide technical book reviews which were I have completed and still read books always. So let us start today's book review. Book Name:   Computer Principles and Design in Verilog  HDL Description:  Uses Verilog HDL to illustrate computer architecture and microprocessor design, allowing readers to readily simulate and adjust the operation of each design, and thus build industrially relevant skills Introduces the computer principles, computer design, and how to use Verilog HDL (Hardware Description Language) to implement the design Provides the skills for designing processor/arithmetic/cpu chips, including the unique application of Verilog HDL material for CPU (central processing unit) implementation Despite the many books on Verilog and computer architecture and microprocessor design, few, if any, use Verilog as a key tool in helping a student to understand these design techniques...

RTL Design Engineer at Skyroot Aerospace

Hello, Dear Readers, Skyroot Aerospace has a vacancy for the RTL Design Engineer role. About Skyroot Aerospace: A cutting-edge startup founded by ex-ISRO scientists. Dedicated to affordable space access, we're rewriting aerospace technology rules. Our dynamic team fosters inventiveness, collaboration, and relentless excellence. Join us on a transformative journey to redefine space possibilities. Welcome to the forefront of space innovation with Skyroot Aerospace! Purpose of role: Understand architectural requirements and Design micro-architecture, implement design blocks using VHDL/Verilog for FPGA based Avionics packages for orbital launch vehicles and ground infrastructure. Job Requirements: 2+ Years of RTL and system design experience. Strong knowledge on Digital System Design (DSD). Strong knowledge of RTL/SoC design/integration with VHDL/Verilog. Strong knowledge in problem solving and debugging skills. Ability to understand architectural requirements and Design micro-archite...