Skip to main content

Posts

Showing posts with the label Verilog Code of Combinational Circuit

RTL Design Engineer at Skyroot Aerospace

Hello, Dear Readers, Skyroot Aerospace has a vacancy for the RTL Design Engineer role. About Skyroot Aerospace: A cutting-edge startup founded by ex-ISRO scientists. Dedicated to affordable space access, we're rewriting aerospace technology rules. Our dynamic team fosters inventiveness, collaboration, and relentless excellence. Join us on a transformative journey to redefine space possibilities. Welcome to the forefront of space innovation with Skyroot Aerospace! Purpose of role: Understand architectural requirements and Design micro-architecture, implement design blocks using VHDL/Verilog for FPGA based Avionics packages for orbital launch vehicles and ground infrastructure. Job Requirements: 2+ Years of RTL and system design experience. Strong knowledge on Digital System Design (DSD). Strong knowledge of RTL/SoC design/integration with VHDL/Verilog. Strong knowledge in problem solving and debugging skills. Ability to understand architectural requirements and Design micro-archite...

Carry Lookahead Adder Design And Implementation of Generic Parametrized Adder Using Verilog HDL

  Hello Dear Readers, Today In this post I have designed a carry-lookahead adder design and implemented its parametrized version using Verilog HDL and analysis that design for the desire output. First of all, I have designed CLA based on the theory described in the below video of the Neso Academy.       Verilog Code: module add (a, b, c, g, p, s); // adder and g, p input a, b, c; // inputs: a, b, c; output g, p, s; // outputs: g, p, s; assign s=a ^ b ^ c; // output: sum of inputs assign g = a & b; // output: carry generator assign p = a | b; // output: carry propagator endmodule module gp (g,p,c_in,g_out,p_out,c_out); // carry generator, carry propagator input [1:0] g, p; // lower level 2-set of g, p input c_in; // lower level carry_in output g_out,p_out,c_out; // higher level g, p, carry_out assign g_out = g[1] | p[1] & g[0]; // higher level carry generator assign p_out = p[1] & p[0]; // higher level carry propagator assign c_out = g[0] | p[0] & c_in...

Verilog Code of 4bit BCD Adder Using Full Adder

  Hello Dear Readers, Today in this post I will be providing you a complete Verilog code of 4 Bit BCD Adder using the Full Adder instant model. So before the start, the code keep in mind the algorithms for the BCD adder is if the additional sum is greater than 9 will become up then we add 6 on it to make a valid BCD number so here in my code I have used this algorithm so keep in mind. Verilog Code: module bcd_4bit(input [3:0] x,y,input cy_in,output [3:0] sum,output carry,output [4:0] bcd_sum); add4 a1 (carry,sum,x,y,cy_in); assign bcd_sum=carry==1?{carry,(sum+4'b0110)}:sum; endmodule module add4(cy4,sum,x,y,cy_in     ); input [3:0] x,y; input cy_in; output [3:0] sum; output cy4; wire [2:0] carry_out; add b0(carry_out[0],sum[0],x[0],y[0],cy_in); add b1(carry_out[1],sum[1],x[1],y[1],carry_out[0]); add b2(carry_out[2],sum[2],x[2],y[2],carry_out[1]); add b3(cy4,sum[3],x[3],y[3],carry_out[2]); endmodule module add(carry_out,sum,a,b,cy_in     ); input a,b,cy_in; outpu...