Skip to main content

Physical Design Methodology Engineer at Texas Instruments

  Hello Dear Readers, Texas Instruments Bangalore has a vacancy for the Physical Design Engineer role. We need an Physical Design Methodology Engineer to join our ATD team. The candidate should have a strong background in back-end design of ASIC/SoC chips. The ideal candidate will have a bachelor’s or master’s degree in Electrical Engineering or a related field. Requirements: 1 - 2 Years of experience in physical design Bachelor’s or master’s degree in Electrical/Electronics Engineering or a related field Strong understanding of physical design principles Must know the basics of floorplan, placement, CTS, routing, ECO, Physical Verification Proficiency in back-end design tools, such as Cadence Genus/Innovus/Tempus/Voltus Excellent problem-solving skills and attention to detail Effective communication and collaboration skills Responsibilities: Synthesis to GDSII Perform full Physical design flow and its verification Work closely with Digital Design and DFT engineers Ensure...

Carry Lookahead Adder Design And Implementation of Generic Parametrized Adder Using Verilog HDL

 Hello Dear Readers,

Today In this post I have designed a carry-lookahead adder design and implemented its parametrized version using Verilog HDL and analysis that design for the desire output. First of all, I have designed CLA based on the theory described in the below video of the Neso Academy.
     


Verilog Code:
module add (a, b, c, g, p, s); // adder and g, p
input a, b, c; // inputs: a, b, c;
output g, p, s; // outputs: g, p, s;
assign s=a ^ b ^ c; // output: sum of inputs
assign g = a & b; // output: carry generator
assign p = a | b; // output: carry propagator
endmodule

module gp (g,p,c_in,g_out,p_out,c_out); // carry generator, carry propagator
input [1:0] g, p; // lower level 2-set of g, p
input c_in; // lower level carry_in
output g_out,p_out,c_out; // higher level g, p, carry_out
assign g_out = g[1] | p[1] & g[0]; // higher level carry generator
assign p_out = p[1] & p[0]; // higher level carry propagator
assign c_out = g[0] | p[0] & c_in; // higher level carry_out
endmodule

module cla_2 (a, b, c_in, g_out, p_out, s); // 2-bit carry lookahead adder
input [1:0] a, b; // inputs: a, b
input c_in; // input: carry_in
output g_out, p_out; // outputs: g, p
output [1:0] s; // output: sum
wire [1:0] g, p; // internal wires
wire c_out; // internal wire
// add (a, b, c, g, p, s); // generates g,p,s
add a0 (a[0], b[0], c_in, g[0], p[0], s[0]); // add on bit 0
add a1 (a[1], b[1], c_out, g[1], p[1], s[1]); // add on bit 1
// gp (g, p, c_in, g_out, p_out, c_out); // higher level g,p
gp gp0 (g, p, c_in, g_out, p_out, c_out); // higher level g,p
endmodule

module cla_4 (a,b,c_in,g_out,p_out,s); // 4-bit carry lookahead adder
input [3:0] a, b; // inputs: a, b
input c_in; // input: carry_in
output g_out, p_out; // outputs: g, p
output [3:0] s; // output: sum
wire [1:0] g, p; // internal wires
wire c_out; // internal wire
cla_2 a0 (a[1:0],b[1:0],c_in, g[0],p[0],s[1:0]); // add on bits 0,1
cla_2 a1 (a[3:2],b[3:2],c_out,g[1],p[1],s[3:2]); // add on bits 2,3
gp gp0 (g,p,c_in, g_out,p_out,c_out); // higher level g,p
endmodule

module cla_8 (a,b,c_in,g_out,p_out,s); // 8-bit carry lookahead adder
input [7:0] a, b; // inputs: a, b
input c_in; // input: carry_in
output g_out, p_out; // outputs: g, p
output [7:0] s; // output: sum
wire [1:0] g, p; // internal wires
wire c_out; // internal wire
cla_4 a0 (a[3:0],b[3:0],c_in, g[0],p[0],s[3:0]); // add on bits 0-3
cla_4 a1 (a[7:4],b[7:4],c_out,g[1],p[1],s[7:4]); // add on bits 4-7
gp gp0 (g,p,c_in, g_out,p_out,c_out); // higher level g,p
endmodule

module cla_16 (a,b,c_in,g_out,p_out,s); // 16-bit carry lookahead adder
input [15:0] a, b; // inputs: a, b
input c_in; // input: carry_in
output g_out, p_out; // outputs: g, p
output [15:0] s; // output: sum
wire [1:0] g, p; // internal wires
wire c_out; // internal wire
cla_8 a0 (a[7:0], b[7:0], c_in, g[0],p[0],s[7:0]); // add on bits 0-7
cla_8 a1 (a[15:8],b[15:8],c_out,g[1],p[1],s[15:8]); // add on bits 8-15
gp gp0 (g,p,c_in, g_out,p_out,c_out); // higher level g,p
endmodule

module CLA_32(a,b,c_in,g_out,p_out,s);
input [31:0] a, b; // inputs: a, b
input c_in; // input: carry_in
output g_out, p_out; // outputs: g, p
output [31:0] s; // output: sum
wire [1:0] g, p; // internal wires
wire c_out; // internal wire
cla_16 a0 (a[15:0], b[15:0], c_in, g[0],p[0],s[15:0]); // + bits 0-15
cla_16 a1 (a[31:16],b[31:16],c_out,g[1],p[1],s[31:16]); // + bits 16-31
gp gp0 (g,p,c_in,g_out,p_out,c_out);
endmodule

module cla32 (a,b,ci,s); // 32-bit carry lookahead adder, no g, p outputs
input [31:0] a, b; // inputs: a, b
input ci; // input: carry_in
output [31:0] s; // output: sum
wire g_out, p_out; // internal wires
CLA_32 cla (a, b, ci, g_out, p_out, s); // use cla_32 module
endmodule

Simulational Results:




Parametrized Version Verilog Code:
module carry_lookahead_adder(A,B,S,Cout,Cin);
    parameter N = 4;
    
    input [N-1:0]A,B;
    input Cin;
    output [N-1:0]S;
  output Cout;

    wire [N-1:0]P, G ;
    wire [N:0]C;
    propagate_generate #(.N(N)) M1(.A(A), .B(B), .P(P), .G(G));
    carry_generate #(.N(N)) M2 (.P(P), .G(G), .C(C), .Cin(Cin));

    assign S = P ^ C;
    assign Cout = C[N];

endmodule


module propagate_generate(A,B,P,G);
    parameter N = 4;
    input [N-1 :0] A,B;
    output [N-1 :0]P,G;

    assign P = A^B;
    assign G = A&B;

endmodule


module carry_generate(P,G,C,Cin);
    parameter N = 4;
    input [N-1:0]P,G;
  input Cin;
    output [N:0]C;
    assign C[0] =Cin;
    genvar i;
  generate for(i=1;i<=N;i=i+1) begin
        assign C[i] = G[i-1] | (P[i-1]&C[i-1]);
    end
    endgenerate

endmodule


Test Bench Verilog Code:

module tb;
    reg [2:0]A,B;
    wire [2:0]S;
    reg Cin;
    wire Cout;

    carry_lookahead_adder #(.N(3)) DUT(.A(A), .B(B), .S(S), .Cout(Cout), .Cin(Cin));


    task load(input [2:0]a,b, input c); begin
        A = a;
        B = b;
      Cin = c;    
    end
    endtask

    integer i , j,k;
    initial begin
        $dumpfile ("carry_lookahead_adder.vcd");
        $dumpvars (0, tb);  
        for (k=0;k<2;k=k+1) begin
            for (i=0; i<8 ; i=i+1) begin
                for(j=0;j<8;j=j+1) begin
                    load(i,j,k);
                    #10;
                end
            end
        end
        $finish;
    end
    initial $monitor("A = %b, B = %b, Cin = %b, Cout = %b, Sum = %b",A,B,Cin,Cout,S);

endmodule

Simulational Results:


If you want to implement its entire RTL to GDSII then refer to the below articles series.




Comments

Post a Comment

Popular posts from this blog

Best Book for Designing Microarchitecture of Microprocessor Using Verilog HDL

  Hello Dear Readers, Currently, after succeeding in many topics now I starting to provide technical book reviews which were I have completed and still read books always. So let us start today's book review. Book Name:   Computer Principles and Design in Verilog  HDL Description:  Uses Verilog HDL to illustrate computer architecture and microprocessor design, allowing readers to readily simulate and adjust the operation of each design, and thus build industrially relevant skills Introduces the computer principles, computer design, and how to use Verilog HDL (Hardware Description Language) to implement the design Provides the skills for designing processor/arithmetic/cpu chips, including the unique application of Verilog HDL material for CPU (central processing unit) implementation Despite the many books on Verilog and computer architecture and microprocessor design, few, if any, use Verilog as a key tool in helping a student to understand these design techniques...

Internship - SoC /IP Design at NXP India

Hello Dear Readers, Currently, at NXP India  vacancy for  Internship - SoC /IP Design   role.   We are looking for a Master degree student with Electronics and Communication Engineering, or related field, with an emphasis on SoC design. This is a full-time internship with a duration of about 11-12 months. Job Responsibility: Working with our experienced design team to design state of the art SoC hardware specific segment applications like Automotive, IoT, voice/object recognition, security, smart connectivity and touch sensing . Assisting experienced engineers with End-to-end ownership of SoC Design, Verification and implementation (Physical Design). Design and verify digital and Mixed-signal IPs. Document designs and present results. Job Qualification: Master student in electronic/computer engineering Creative and positive mindset Good knowledge on CMOS technologies Great communication skills, interpersonal skills, teamwork skills and can-do attitude Desire for a ca...

IC Design Engineer at Broadcom

  Hello Dear Readers, Currently, at Broadcom vacancy for an IC Design Engineer role. Job Description: Candidate would be required to work on various phases of SOC physical design activities. The job will include but not limited to block level – floor-planning, partitioning, placement, clock tree synthesis, route, physical verification (LVS/DRC/ERC/Antenna etc). Should be able to meet congestion, timing and area metrics.  Candidate would be required to do equivalence checks, STA, Crosstalk delay analysis, noise analysis, power optimization. Should be able to implement timing and functional ECOs. Should have excellent problem-solving skill to help through congestion resolution and timing closure. Should have experience formal verification and timing analysis and ECO implementation. Experience with tools such as Innovus/Encounter, ICC, Caliber, LEC, Primetime etc is highly desirable. Candidate should be able to work independently and guide other team members. Should be ...