Skip to main content

Design Engineer - STA, SD, Power, PDN at Dew Software

Hello Dear Readers,   Currently at Dew Software Bangalore vacancy for Design Engineer - STA, SD, Power, PDN role. Dew Software, a leading player in the Digital Transformation space, is seeking a skilled Design Engineer specializing in STA (Static Timing Analysis), SD (Signal Integrity), Power, and PDN (Power Delivery Network) to join our team. Working with Fortune 500 companies to support their digital innovation and transformation strategies, the Design Engineer will be responsible for ensuring the integrity and efficiency of digital designs through comprehensive analysis and optimization. Dew Software is dedicated to delivering exceptional outcomes with cutting-edge technologies, and this is an excellent opportunity to contribute to the growth and success of our clients. Responsibilities: Perform STA (Static Timing Analysis) to ensure design meets timing requirements Conduct signal integrity analysis to optimize signal integrity and minimize signal integrity issues Provide power anal

CMOS Logic Gates Using Verilog HDL

  CMOS Logic Gate Design 

Hello Dear Readers,

This section describes how to used a low-level CMOS transistor to design basic digital logic gates and its implementation in Verilog HDL.

In CMOS technology, both PMOS as well as NMOS transistors, are used. PMOS is active when the input signal will be 0(Low) level, and NMOS is active when the input signal will be 1(High) level. In below figures show the basic design of the CMOS inverter, NAND, NOR gates. We know if we made AND or OR gate from NAND or NOR respectively, then we need two more transistors of the inverter. That's why we see in the gate array chips contain an array of the universal gates only.




In the below section, I have written the whole Verilog code of all the gates with testbench code.

Verilog Code:

module CMOS_Gates(input a,b,output f,f1,f2
    );
supply1 vdd;
supply0 gnd;
wire w1,w2;

//NOT gate
// pmos (drain, source, gate);
pmos t1 (f, vdd, a);
// nmos (drain, source, gate);
nmos t2 (f, gnd, a);

//NAND gate

// pmos (drain, source, gate);
pmos t3 (f1, vdd, a);
pmos t4 (f1, vdd, b);
// nmos (drain, source, gate);
nmos t5 (f1, w_n, a);
nmos t6 (w1, gnd, b);

//NOR gate

// nmos (drain, source, gate);
nmos t7 (f2, gnd, a);
nmos t8 (f2, gnd, b);
// pmos (drain, source, gate);
pmos t9 (w2, vdd, a);
pmos t10 (f2, w2, b);

endmodule

module tb();
reg a,b;
wire f;
CMOS_Gates DUT (a,b,f,f1,f2);
initial 
begin
   a=0; b=1;
#1 a=1; b=0;
#1 a=0; b=1;
#1 $finish;
end
initial 
begin
$monitor("%2d:\ta = %b\tb=%b\tf = %b\tf1 = %b\tf2 = %b",$time,a,b,f,f1,f2);
end
endmodule
 
Here supply0, supply1, pmos, and nmos are keywords that stand for ground, power supply, PMOS transistor, and NMOS transistor, respectively. Here testbench program is also written with an input signal a,b, and output f,f1,f2 is corresponding to the NOT, NAND, NOR gate.

Thanks for Reading,
If you have any doubts related to this Verilog code, just write them in the comments. I will be giving a reply as soon as possible.



Comments

  1. Wow sir great start keep it up.

    ReplyDelete
  2. Good sir now we are waiting project type codeπŸ€—πŸ€—πŸ€—πŸ€—πŸ€—πŸ€—πŸ€—

    ReplyDelete

Post a Comment

Popular posts from this blog

Apprenticeship CAI at MediaTek Bangalore

Hello Dear Readers,   Currently at MediaTek Bangalore vacancy for an Apprenticeship CAI role. Job Description: B.Tech degree in Electrical/Electronics Engineering with a strong educational background in Digital circuit design Experience in physical design of high performance design with frequencies > 2 Ghz. Experienced in hierarchical design, budgeting, multiple voltage domains and multiple clock domains. Strong skills with Cadence Encounter. Solid understanding of STA and timing constraints. Experienced in working on advanced process nodes (16nm). Strong expertise in Physical Verification to debug LVS/DRC issues at the block level. Requirement: B.Tech degree in Electrical/Electronics Engineering with strong educational background in Digital circuit design Experience in physical design of high performance design with frequencies > 2 Ghz. Experienced in hierarchical design, budgeting, multiple voltage domains and multiple clock domains. Strong skills with Cadence Encounter. Solid

Power Analysis in the VLSI Chip Design

  Hello Dear Readers,   Today in this series of posts I will provide some deep insight into Power Analysis in the VLSI Chip Design. The power analysis flow calculates (estimates of) the active and static leakage power dissipation of the SoC design. This electrical analysis step utilizes the detailed extraction model of the block and global SoC layouts. The active power estimates depend on the availability of switching factors for all signals in the cell netlist. Representative simulation test cases are applied to the netlist model, and the signal value change data are recorded. The output data from the power analysis flow guide the following SoC tape out release assessments:  Total SoC power specification (average and standby leakage): The specification for SoC power is critical for package selection and is used by end customers for thermal analysis of the product enclosure. In addition to the package technology selection, the SoC power dissipation is used to evaluate the die attach ma

IC Physical Design (PnR) at Ulkasemi

Hello Dear Readers,   Ulkasemi  has a vacancy for an IC Physical Design (PnR) role. Job Overview: As a full-time Trainee Engineer, the individual will be working on IC Physical Design implementation from RTL to GDSII to create design databases ready for manufacturing with a special focus on power, performance & area optimization with next-generation state-of-the-art process technologies. Job Responsibilities: Perform physical design implementation which includes Floor planning, Power Planning, Clock Tree Synthesis, Place and Route, ECO, Logic Equivalence checks Timing analysis, physical & electrical verification, driving the sign-off closure meeting schedule, and design goals Develop flow, methodologies, and automation scripts for various implementation steps Follow the instructions, compile documents, prepare deliverables, and report to the team lead Should remain up to date with the latest technology trends Educational Qualification:   B.Sc/M.Sc   in EEE or equivalent degree