Skip to main content

Product Engineer II at Cadence Design Systems

Hello Dear Readers, Cadence Design Systems has a vacancy for a Product Engineer II role. Cadence is a pivotal leader in electronic design, building upon more than 30 years of computational software expertise. The company applies its underlying Intelligent System Design strategy to deliver software, hardware and IP that turn design concepts into reality.  Cadence customers are the world’s most innovative companies, delivering extraordinary electronic products from chips to boards to systems for the most dynamic market applications including consumer, hyperscale computing, 5G communications, automotive, aerospace industrial and health. The Cadence Advantage: The opportunity to work on cutting-edge technology in an environment that encourages you to be creative, innovative, and to make an impact. Cadence’s employee-friendly policies focus on the physical and mental well-being of employees, career development, providing opportunities for learning, and celebrating success in recog...

PowerVia: Revolutionary Test Shows Industry Leading Performance

 Hello Dear Readers, 

Today in this post, learn about PowerVia Test which is Intel's first to implement backside power in a product like chip, resulting in over 90% cell utilization and other gains. 



Intel is the first in the industry to implement backside power delivery on a product-like test chip, achieving the performance needed to propel the world into the next era of computing. PowerVia, which will be introduced on the Intel 20A process node in the first half of 2024, is Intel’s industry-leading backside power delivery solution. It solves the growing issue of interconnect bottlenecks in area scaling by moving power routing to the backside of a wafer.

PowerVia is a major milestone in our aggressive ‘five nodes in four years’ strategy and on our path to achieving a trillion transistors in a package in 2030. Using a trial process node and subsequent test chip-enabled us to de-risk backside power for our leading process nodes, placing Intel a node ahead of competitors in bringing backside power delivery to market.

How It Works:

Intel decoupled the development of PowerVia from transistor development to ensure its readiness for silicon implementation based on Intel 20A and Intel 18A process nodes. PowerVia was tested on its own internal test node to debug and ensure good functionality of the technology before its integration with RibbonFET in Intel 20A. After fabrication and testing on a silicon test chip, PowerVia was confirmed to bring a remarkably efficient use of chip resources with greater than 90% cell utilization and major transistor scaling, enabling chip designers to achieve performance and efficiency gains in their products.

Why It Matters:

PowerVia is well ahead of competitors’ backside power solutions, giving chip designers – including Intel Foundry Services (IFS) customers – a faster path to valuable energy and performance gains in their products. Intel has a long track record of introducing the industry’s most critical new technologies, such as strained silicon, Hi-K metal gate, and FinFET, to propel Moore’s Law forward. With PowerVia and RibbonFET gate-all-around technology coming in 2024, Intel continues to lead the industry in chip design and process innovations.   

PowerVia is the first to solve the growing interconnect bottleneck issue for chip designers. Surging use cases, including artificial intelligence and graphics, require smaller, denser, and more powerful transistors to meet ever-growing computing demands. Today and for the past many decades, power and signal lines within a transistor’s architecture have competed for the same resources. By separating the two, chips can increase performance and energy efficiency, and deliver better results for customers. Backside power delivery is vital to transistor scaling, enabling chip designers to increase transistor density without sacrificing resources to deliver more power and performance than ever. 



How They Are Doing It: 

Intel 20A and Intel 18A will introduce both PowerVia backside power technology and RibbonFET gate-all-around technology. As a completely new way of delivering power to the transistors, backside power implementation raised new challenges for thermals and debugging designs.  

By decoupling the development of PowerVia from RibbonFET, Intel could work through those challenges quickly to ensure readiness for implementation in silicon based on Intel’s 20A and 18A process nodes. Intel engineers developed mitigation techniques to prevent the thermals from becoming an issue. The debug community also developed new techniques to ensure the new design structure could be appropriately de-bugged. As a result, the test implementation delivered solid yield and reliability metrics while demonstrating the intrinsic value proposition of the technology well before it joins the new RibbonFET architecture. 

The test also leveraged design rules enabled by EUV (extreme ultraviolet) lithography, which produced results including standard cell utilization of more than 90% over large areas of the die, enabling greater cell density, which can be expected to lower costs. The test also showed more than 30% platform voltage droop improvement and a 6% frequency benefit. Intel also achieved thermal characteristics in the PowerVia test chip in line with higher power densities expected from logic scaling. 


Importance of 3DIC Ecosystem in the VLSI Market


Connect with me 

4.WhatsApp 

Comments

Popular posts from this blog

SDC (Synopsys Design Constraints) contents part 4

Today, we will be discussing the remaining constraints mentioned in the SDC, which pertain to timing exceptions and design rules. This is the final part of the SDC contents. This is going to be interesting, especially with multicycle paths. Take time to read and try to comprehend. 10. set_max_transition     By setting max transition value, our design checks that all ports and pins are meeting the specified limits mentioned in SDC. If these are not satisfied then timing report will give DRVs (design rule violations) in terms of slack. This is specified as               set_max_transition 0.5  UBUF1/A setting maximum limit of 500ps on pin A of Buffer1. 11. set_max_capacitance     This is same as max transition, setting the maximum capacitance value. if our design not meeting this value then violation will occur. This will also reports under design rule violations in terms of slack.     set_max_capacitance 0.7 [all_...

Apprenticeship CAI at MediaTek Bangalore

Hello Dear Readers,   Currently at MediaTek Bangalore vacancy for an Apprenticeship CAI role. Job Description: B.Tech degree in Electrical/Electronics Engineering with a strong educational background in Digital circuit design Experience in physical design of high performance design with frequencies > 2 Ghz. Experienced in hierarchical design, budgeting, multiple voltage domains and multiple clock domains. Strong skills with Cadence Encounter. Solid understanding of STA and timing constraints. Experienced in working on advanced process nodes (16nm). Strong expertise in Physical Verification to debug LVS/DRC issues at the block level. Requirement: B.Tech degree in Electrical/Electronics Engineering with strong educational background in Digital circuit design Experience in physical design of high performance design with frequencies > 2 Ghz. Experienced in hierarchical design, budgeting, multiple voltage domains and multiple clock domains. Strong skills with Cadence Enc...

IC Physical Design (PnR) at Ulkasemi

Hello Dear Readers,   Ulkasemi  has a vacancy for an IC Physical Design (PnR) role. Job Overview: As a full-time Trainee Engineer, the individual will be working on IC Physical Design implementation from RTL to GDSII to create design databases ready for manufacturing with a special focus on power, performance & area optimization with next-generation state-of-the-art process technologies. Job Responsibilities: Perform physical design implementation which includes Floor planning, Power Planning, Clock Tree Synthesis, Place and Route, ECO, Logic Equivalence checks Timing analysis, physical & electrical verification, driving the sign-off closure meeting schedule, and design goals Develop flow, methodologies, and automation scripts for various implementation steps Follow the instructions, compile documents, prepare deliverables, and report to the team lead Should remain up to date with the latest technology trends Educational Qualification:   B.Sc/M.Sc   in EEE or...