Skip to main content

Design Engineer - STA, SD, Power, PDN at Dew Software

Hello Dear Readers,   Currently at Dew Software Bangalore vacancy for Design Engineer - STA, SD, Power, PDN role. Dew Software, a leading player in the Digital Transformation space, is seeking a skilled Design Engineer specializing in STA (Static Timing Analysis), SD (Signal Integrity), Power, and PDN (Power Delivery Network) to join our team. Working with Fortune 500 companies to support their digital innovation and transformation strategies, the Design Engineer will be responsible for ensuring the integrity and efficiency of digital designs through comprehensive analysis and optimization. Dew Software is dedicated to delivering exceptional outcomes with cutting-edge technologies, and this is an excellent opportunity to contribute to the growth and success of our clients. Responsibilities: Perform STA (Static Timing Analysis) to ensure design meets timing requirements Conduct signal integrity analysis to optimize signal integrity and minimize signal integrity issues Provide power anal

Evolution of Logic Design and Its Abstractions

 Hello Dear Readers,

Today, I have summarized the evolution of logic design and two abstractions of the system design flow that has been discussed.

During the year 1958, Jack Kilby, a young electrical engineer at Texas Instrument figured out how to place the circuit elements, transistors, resistors, and capacitors, on a small piece of Germanium. But prior to the year 1958, many more revolutionized ideas were published and conceptualized.

Gottfried Leibniz was a famous mathematician and philosopher from Germany and he redefined the binary number system during the year 1676–1679. After the successful redefinition of number systems, the famous mathematician George Boole during the year 1854 invented the Boolean algebra and the revolution of the digital logic design set into motion. The actual invention of the prototype transistor model during the year 1946–1947 at Bell Labs by Shockley, Bardeen, Brattain had revolutionized the use of semiconductor in switching theory and for design of chip. The design of first working transistor was the biggest contribution by the Morris Tanenbaum during the year 1954 at Texas Instruments. The invention of CMOS logic during 1963 has made integration of logic cells very easy and it was predicted by Intel’s cofounder Gordon Moore that the density of the logic cells for the same silicon area will be doubled for every 18 to 24 months. This is what we call as Moore’s law. 

Fig.1:https://www.autodesk.com/products/eagle/blog/integrated-circuit-moores-law/

How Moore’s prediction was right, that experience engineers can get with the complex VLSI-based ASIC chip designs. In the present decade, the chip area has shrunk enough and process technology node on which design houses foundries are working is 14 nm and the chip has billions of cells of small silicon die size. With the evolutions in the design and manufacturing technologies; most of the designs are implemented by using Very High-Speed Integrated Circuit Hardware Description Language (VHSICHDL) or using Verilog. The evolution in the EDA industry has opened up new efficient path ways for the design engineers to complete the milestones in less time.

As shown in Fig.2 most of the designs have various abstraction levels. The design approach can be top-down or bottom-up. The implementation team takes decision about the right approach depending on the design complexity and availability of design resources. Most of the complex designs are using the top-down approach instead of bottom-up approach. The design is described as functional model initially and the architecture and micro-architecture of the design is described by understanding the functional design specifications. Architecture design involves the estimation of the memory processor logic and throughput with associative glue logic and functional design requirements. Architecture design is in the form of functional blocks and represents the functionality of design in the block diagram form. The micro-architecture is the detailed representation of every architecture block and it describes the block and sub block level details, interface and pin connections, and hierarchical design details. The information about synchronous or asynchronous designs and clock and reset trees can be also described in the micro-architecture document. RTL stands for Register Transfer Level. RTL design uses micro-architecture as reference design document and design can be coded using Verilog RTL for the required design functionality. The efficient design and coding guidelines at this stage plays important role and efficient RTL reduces the overall time requirement during the implementation phase. The outcome of RTL design is gate level netlist. Gate level netlist is the output from the RTL design stage after performing RTL synthesis and it is representation of the functional design in the form of combinational and sequential logic cells. Finally, the switch level design is the abstraction used at the layout to represent the design in the form of switches. PMOS, NMOS, and CMOS.

   Fig. 2: Vaibbhav Taraate (auth.) - Digital Logic Design Using Verilog_ Coding and RTL Synthesis



Connect with me 




Comments

  1. Moore law will definately creating war in the world.

    ReplyDelete
  2. Moore's is past Elon musk he just suggested incremental law so semiconductor is brighter day by day.

    ReplyDelete
  3. Moore's law only has source of motivation in semiconductor industry.

    ReplyDelete
  4. Moore's law has energy of semiconductor but Moore's just forgot to put limit.

    ReplyDelete

Post a Comment

Popular posts from this blog

Apprenticeship CAI at MediaTek Bangalore

Hello Dear Readers,   Currently at MediaTek Bangalore vacancy for an Apprenticeship CAI role. Job Description: B.Tech degree in Electrical/Electronics Engineering with a strong educational background in Digital circuit design Experience in physical design of high performance design with frequencies > 2 Ghz. Experienced in hierarchical design, budgeting, multiple voltage domains and multiple clock domains. Strong skills with Cadence Encounter. Solid understanding of STA and timing constraints. Experienced in working on advanced process nodes (16nm). Strong expertise in Physical Verification to debug LVS/DRC issues at the block level. Requirement: B.Tech degree in Electrical/Electronics Engineering with strong educational background in Digital circuit design Experience in physical design of high performance design with frequencies > 2 Ghz. Experienced in hierarchical design, budgeting, multiple voltage domains and multiple clock domains. Strong skills with Cadence Encounter. Solid

Power Analysis in the VLSI Chip Design

  Hello Dear Readers,   Today in this series of posts I will provide some deep insight into Power Analysis in the VLSI Chip Design. The power analysis flow calculates (estimates of) the active and static leakage power dissipation of the SoC design. This electrical analysis step utilizes the detailed extraction model of the block and global SoC layouts. The active power estimates depend on the availability of switching factors for all signals in the cell netlist. Representative simulation test cases are applied to the netlist model, and the signal value change data are recorded. The output data from the power analysis flow guide the following SoC tape out release assessments:  Total SoC power specification (average and standby leakage): The specification for SoC power is critical for package selection and is used by end customers for thermal analysis of the product enclosure. In addition to the package technology selection, the SoC power dissipation is used to evaluate the die attach ma

IC Physical Design (PnR) at Ulkasemi

Hello Dear Readers,   Ulkasemi  has a vacancy for an IC Physical Design (PnR) role. Job Overview: As a full-time Trainee Engineer, the individual will be working on IC Physical Design implementation from RTL to GDSII to create design databases ready for manufacturing with a special focus on power, performance & area optimization with next-generation state-of-the-art process technologies. Job Responsibilities: Perform physical design implementation which includes Floor planning, Power Planning, Clock Tree Synthesis, Place and Route, ECO, Logic Equivalence checks Timing analysis, physical & electrical verification, driving the sign-off closure meeting schedule, and design goals Develop flow, methodologies, and automation scripts for various implementation steps Follow the instructions, compile documents, prepare deliverables, and report to the team lead Should remain up to date with the latest technology trends Educational Qualification:   B.Sc/M.Sc   in EEE or equivalent degree