Skip to main content

RTL Design Engineer at Skyroot Aerospace

Hello, Dear Readers, Skyroot Aerospace has a vacancy for the RTL Design Engineer role. About Skyroot Aerospace: A cutting-edge startup founded by ex-ISRO scientists. Dedicated to affordable space access, we're rewriting aerospace technology rules. Our dynamic team fosters inventiveness, collaboration, and relentless excellence. Join us on a transformative journey to redefine space possibilities. Welcome to the forefront of space innovation with Skyroot Aerospace! Purpose of role: Understand architectural requirements and Design micro-architecture, implement design blocks using VHDL/Verilog for FPGA based Avionics packages for orbital launch vehicles and ground infrastructure. Job Requirements: 2+ Years of RTL and system design experience. Strong knowledge on Digital System Design (DSD). Strong knowledge of RTL/SoC design/integration with VHDL/Verilog. Strong knowledge in problem solving and debugging skills. Ability to understand architectural requirements and Design micro-archite...

What is STA and what is its significance in physical design?

Dear Readers, 

Today, we will be talking about STA, which is commonly referred to as static timing analysis. What is the actual meaning of it? What is the reason for doing it? What is the role of STA engineers in the real world? Many of us know that physical design is vast, and placing macros and standard cells interconnected with some metal layers is not enough. It's important to ensure that the input data gets to the output on time without any corruption or overwriting. For that, we need to do Setup and hold checks. What are these setup and hold? What are the reasons behind these timing violations? What is crosstalk, noise, timing arc, and unateness? What are the signoff checks we (STA engineers) do before the chip is going to tape out? All of these concepts we will discuss under this STA topic one by one in detail. Please stay tuned. Continue to read and learn with us. It's going to be fun😇


What is static timing analysis (STA)?

Timing analysis is the evaluation of a design for timing issues, and it is called static because it doesn't involve any input or output vectors. On the contrary, verifying the functionality of the design by giving some test vectors is called dynamic timing analysis. However, increased test vectors result in complex computations and maximum delay.  Even though STA is more effective it has some limitations. such as It is not suitable for asynchronous clock domain crossings and unknown logic values(inputs with don't care conditions), STA is subjected to only RTL (Register Transfer Logic) designs, etc... In the future, we will study these limitations in depth.

The most commonly used tools for STA are primetime from Synopsys Primetime user guide and tempus from cadence Tempus user guide.  


Why STA?

Verification of timing through simulations by applying test vectors is very exhaustive and time-consuming. As we know one chip contains billions of gates verify the timing for these using simulations is very slow. That's where STA will help, it is the faster and simplest way to analyze the timing in the most pessimistic way. And also the effects of crosstalk, noise, and on-chip variations cannot be handled by logic simulation-based verification.


What actually STA does? 

It breaks the design into timing paths, each path has a start and end point. The net delays and cell delays are added to calculate the timing for each path. Then the tool analyzes these paths and checks whether they meet our timing requirement.

In industry, at different stages of implementation STA will be performed. This will be shown in the below figure.



STA Questions for Practice :



Connect with me 

Comments

Popular posts from this blog

Exploring the Role of LEF Files in VLSI Chip Design: A Beginner's Guide

Hello Dear Readers,   Today in this post, I will provide some deep insight into the LEF file role during the VLSI Chip Design process. In VLSI (Very Large Scale Integration) design, a LEF file is a file that contains information about the physical geometry of the standard cells used in a circuit. LEF stands for Library Exchange Format. A standard cell is a pre-designed logic cell that contains a specific function, such as a flip-flop or an AND gate. Standard cells are designed to be easily combinable and scalable to create more complex circuits. The physical geometry of each standard cell is defined in the LEF file. The LEF file contains information such as the width, height, and position of the pins and metal layers of each standard cell. It also contains information about the physical design rules that govern the placement of these cells on the chip. LEF files are important in VLSI design because they enable the interoperability of different design tools from different vend...

Internship - SoC /IP Design at NXP India

Hello Dear Readers, Currently, at NXP India  vacancy for  Internship - SoC /IP Design   role.   We are looking for a Master degree student with Electronics and Communication Engineering, or related field, with an emphasis on SoC design. This is a full-time internship with a duration of about 11-12 months. Job Responsibility: Working with our experienced design team to design state of the art SoC hardware specific segment applications like Automotive, IoT, voice/object recognition, security, smart connectivity and touch sensing . Assisting experienced engineers with End-to-end ownership of SoC Design, Verification and implementation (Physical Design). Design and verify digital and Mixed-signal IPs. Document designs and present results. Job Qualification: Master student in electronic/computer engineering Creative and positive mindset Good knowledge on CMOS technologies Great communication skills, interpersonal skills, teamwork skills and can-do attitude Desire for a ca...

IC Design Engineer at Broadcom

  Hello Dear Readers, Currently, at Broadcom vacancy for an IC Design Engineer role. Job Description: Candidate would be required to work on various phases of SOC physical design activities. The job will include but not limited to block level – floor-planning, partitioning, placement, clock tree synthesis, route, physical verification (LVS/DRC/ERC/Antenna etc). Should be able to meet congestion, timing and area metrics.  Candidate would be required to do equivalence checks, STA, Crosstalk delay analysis, noise analysis, power optimization. Should be able to implement timing and functional ECOs. Should have excellent problem-solving skill to help through congestion resolution and timing closure. Should have experience formal verification and timing analysis and ECO implementation. Experience with tools such as Innovus/Encounter, ICC, Caliber, LEC, Primetime etc is highly desirable. Candidate should be able to work independently and guide other team members. Should be ...