Skip to main content

SRAM/Memory CAD Engineer at Qualcomm

  Hello Dear Readers, Qualcomm Bangalore currently has a vacancy for an SRAM/Memory CAD Engineer. As a leading technology innovator, Qualcomm pushes the boundaries of what's possible to enable next-generation experiences and drives digital transformation to help create a smarter, connected future for all. As a Qualcomm Hardware Engineer, you will plan, design, optimize, verify, and test electronic systems, bring-up yield, circuits, mechanical systems,  Digital/Analog/RF/optical  systems, equipment and packaging, test systems, FPGA, and/or DSP systems that launch cutting-edge, world class products. Qualcomm Hardware Engineers collaborate with cross-functional teams to develop solutions and meet performance requirements. Minimum Qualifications: • Bachelor's degree in Computer Science, Electrical/Electronics Engineering, Engineering, or related field and 3+ years of Hardware Engineering or related work experience. OR Master's degree in Computer Science, Electrical/Electronic...

SDC (Synopsys Design Constraints) contents part 2

 Dear readers, This is the continuation of SDC contents. Today we will talk about other clock related attributes such as clock latency, uncertainty.


3. set_clock_latency

    Latency is the delay taken by a clock signal to reach the clock pin of a register from the clock source. This delay can be added by clock buffers and parasitic on the net. It is of two types. Source latency and Network latency. 

    Source latency is the delay from the clock source to the clock definition point. This is also called insertion  delay. This could represent either on-chip or off-chip. Network latency is the delay from clock definition point to clock pin of a flipflop.

Therefore, Clock latency = Source latency + Network latency.

This is shown in below figure for on-chip and off-chip.


    Network latency is an estimated delay before clock tree is built in CTS stage. Once clock tree is built this is ignored and actual delay came into picture. However, source latency is same even after CTS stage.

    Ex: set_clock_latency  1.2  -source [get_clocks CLK]    ------> source latency

         set_clock_latency 0.6 [get_clocks CLK_CONFIG]     ------>Network latency

 Observe, network latency is specified without '-source' option.

 4. set_clock_uncertainty

Uncertainty used to model the various factors that reduces the effective clock period. Those factors includes skew, jitter or any other pessimism. Setup uncertainty reduces the effective clock period and hold uncertainty used as additional timing margin that needs to be satisfied. That is it pushes the hold requirement further. 

    Ex: set_clock_uncertainty -setup 0.3 [get_clocks CLK_CONFIG]

            set_clock_uncertainty -hold 0.05 [get_clocks CLK_CONFIG]





SKEW: 

It is the time difference between the arrival of clocks at the clock pins of a flip-flop. 

                    Tskew  = Tcapture - Tlaunch 

Positive Skew if Tcapture > Tlaunch                 It is good for set up violation

Negative Skew if Tcapture < Tlaunch               It is good for hold violation   (we will discuss more                                                                                                            about this in future posts)

Note that skew can be seen between the same clock domain or between the different clock domains as well. It is hard to write everything here, like it is very huge topic there are various factors that causes skew internally and externally. So, I am trying to explain here as much simple as possible.

If the difference between arrival time of clock signals at two registers (both registers are of same clock domain) then that is called Intra clock skew or Local skew. If the registers are clocked by different clock domain then that time difference is called Inter clock skew or global skew. Global skew is also defined as difference between longest path delay and shortest path delay on a clock tree. There are multiple definitions for global skew, In general global skew refers to the difference between the clock arrival times across the entire IC. Following figure will give you a clear picture of this.


Skew between FF1 and FF2 is Local skew or intra clock skew.

Skew between FF1 and FF3 is global skew or inter clock skew.

 

we will discuss IO constraints in the next article. Thanks for reading this blog.

I know you guys are eagerly waiting for setup and hold concepts. I will post about that after SDC contents. There are many other concepts in STA we will discuss about that too in our future posts.






Comments

Popular posts from this blog

Internship - SoC /IP Design at NXP India

Hello Dear Readers, Currently, at NXP India  vacancy for  Internship - SoC /IP Design   role.   We are looking for a Master degree student with Electronics and Communication Engineering, or related field, with an emphasis on SoC design. This is a full-time internship with a duration of about 11-12 months. Job Responsibility: Working with our experienced design team to design state of the art SoC hardware specific segment applications like Automotive, IoT, voice/object recognition, security, smart connectivity and touch sensing . Assisting experienced engineers with End-to-end ownership of SoC Design, Verification and implementation (Physical Design). Design and verify digital and Mixed-signal IPs. Document designs and present results. Job Qualification: Master student in electronic/computer engineering Creative and positive mindset Good knowledge on CMOS technologies Great communication skills, interpersonal skills, teamwork skills and can-do attitude Desire for a ca...

Best Book for Designing Microarchitecture of Microprocessor Using Verilog HDL

  Hello Dear Readers, Currently, after succeeding in many topics now I starting to provide technical book reviews which were I have completed and still read books always. So let us start today's book review. Book Name:   Computer Principles and Design in Verilog  HDL Description:  Uses Verilog HDL to illustrate computer architecture and microprocessor design, allowing readers to readily simulate and adjust the operation of each design, and thus build industrially relevant skills Introduces the computer principles, computer design, and how to use Verilog HDL (Hardware Description Language) to implement the design Provides the skills for designing processor/arithmetic/cpu chips, including the unique application of Verilog HDL material for CPU (central processing unit) implementation Despite the many books on Verilog and computer architecture and microprocessor design, few, if any, use Verilog as a key tool in helping a student to understand these design techniques...

Exploring the Role of LEF Files in VLSI Chip Design: A Beginner's Guide

Hello Dear Readers,   Today in this post, I will provide some deep insight into the LEF file role during the VLSI Chip Design process. In VLSI (Very Large Scale Integration) design, a LEF file is a file that contains information about the physical geometry of the standard cells used in a circuit. LEF stands for Library Exchange Format. A standard cell is a pre-designed logic cell that contains a specific function, such as a flip-flop or an AND gate. Standard cells are designed to be easily combinable and scalable to create more complex circuits. The physical geometry of each standard cell is defined in the LEF file. The LEF file contains information such as the width, height, and position of the pins and metal layers of each standard cell. It also contains information about the physical design rules that govern the placement of these cells on the chip. LEF files are important in VLSI design because they enable the interoperability of different design tools from different vend...