Hello Dear Readers, Texas Instruments Bangalore has a vacancy for the Physical Design Engineer role. We need an Physical Design Methodology Engineer to join our ATD team. The candidate should have a strong background in back-end design of ASIC/SoC chips. The ideal candidate will have a bachelor’s or master’s degree in Electrical Engineering or a related field. Requirements: 1 - 2 Years of experience in physical design Bachelor’s or master’s degree in Electrical/Electronics Engineering or a related field Strong understanding of physical design principles Must know the basics of floorplan, placement, CTS, routing, ECO, Physical Verification Proficiency in back-end design tools, such as Cadence Genus/Innovus/Tempus/Voltus Excellent problem-solving skills and attention to detail Effective communication and collaboration skills Responsibilities: Synthesis to GDSII Perform full Physical design flow and its verification Work closely with Digital Design and DFT engineers Ensure...
Hello Dear Readers,
Today in this post I will provide some techniques for timing optimization in ASIC Design.
Timing Optimization Techniques are as follows:
1. Mapping:
Mapping converts primitive logic cells found in a netlist to technology-specific logic gates found in the library on the timing critical paths.
2. Unmapping:
Unmapping converts the technology-specific logic gates in the netlist to primitive logic gates on the timing critical paths.
3. Pin Swapping :
Pin swapping optimization examines the slacks on the inputs of the gates on the worst timing paths and optimizes the timing by swapping nets attached to the input pins, so the net with the least amount of slack is put on the fastest path through the gate without changing the function of the logic.
4. Buffering:
Buffers are inserted in the design to drive a load that is too large for a logic cell to efficiently drive.
If the net is too long then the net is broken and buffers are inserted to improve the transition which will ultimately improve the timing on the data path and reduce the setup violation.
To reduce the hold violations buffers are inserted to add delay on data paths.
5. Cell Sizing:
Cell sizing is the process of assigning a drive strength for a specific cell in the library to a cell instance in the design. If there is a low drive strength cell in the timing critical path then this cell is replaced by a higher drive strength cell to reduce the timing violation.
6. Cloning:
Cell cloning is a method of optimization that decreases a load of a very heavily loaded cell by replicating the cell. Replication is done by connecting an identical cell to the same inputs as the original cell. Cloning clones the cell to divide the fanout load to improve the timing.
7. Logic Restructuring:
Logic restructuring means rearranging logic to meet timing constraints on critical paths of design.
1. Mapping:
Mapping converts primitive logic cells found in a netlist to technology-specific logic gates found in the library on the timing critical paths.
2. Unmapping:
Unmapping converts the technology-specific logic gates in the netlist to primitive logic gates on the timing critical paths.
3. Pin Swapping :
Pin swapping optimization examines the slacks on the inputs of the gates on the worst timing paths and optimizes the timing by swapping nets attached to the input pins, so the net with the least amount of slack is put on the fastest path through the gate without changing the function of the logic.
4. Buffering:
Buffers are inserted in the design to drive a load that is too large for a logic cell to efficiently drive.
If the net is too long then the net is broken and buffers are inserted to improve the transition which will ultimately improve the timing on the data path and reduce the setup violation.
To reduce the hold violations buffers are inserted to add delay on data paths.
5. Cell Sizing:
Cell sizing is the process of assigning a drive strength for a specific cell in the library to a cell instance in the design. If there is a low drive strength cell in the timing critical path then this cell is replaced by a higher drive strength cell to reduce the timing violation.
6. Cloning:
Cell cloning is a method of optimization that decreases a load of a very heavily loaded cell by replicating the cell. Replication is done by connecting an identical cell to the same inputs as the original cell. Cloning clones the cell to divide the fanout load to improve the timing.
7. Logic Restructuring:
Logic restructuring means rearranging logic to meet timing constraints on critical paths of design.
Comments
Post a Comment