Skip to main content

RTL Design Engineer at Skyroot Aerospace

Hello, Dear Readers, Skyroot Aerospace has a vacancy for the RTL Design Engineer role. About Skyroot Aerospace: A cutting-edge startup founded by ex-ISRO scientists. Dedicated to affordable space access, we're rewriting aerospace technology rules. Our dynamic team fosters inventiveness, collaboration, and relentless excellence. Join us on a transformative journey to redefine space possibilities. Welcome to the forefront of space innovation with Skyroot Aerospace! Purpose of role: Understand architectural requirements and Design micro-architecture, implement design blocks using VHDL/Verilog for FPGA based Avionics packages for orbital launch vehicles and ground infrastructure. Job Requirements: 2+ Years of RTL and system design experience. Strong knowledge on Digital System Design (DSD). Strong knowledge of RTL/SoC design/integration with VHDL/Verilog. Strong knowledge in problem solving and debugging skills. Ability to understand architectural requirements and Design micro-archite...

Timing Optimization In ASIC Design

 Hello Dear Readers, 

Today in this post I will provide some techniques for timing optimization in ASIC Design.

Timing Optimization Techniques are as follows:

1. Mapping:
Mapping converts primitive logic cells found in a netlist to technology-specific logic gates found in the library on the timing critical paths.

2. Unmapping:
Unmapping converts the technology-specific logic gates in the netlist to primitive logic gates on the timing critical paths.

3. Pin Swapping :
Pin swapping optimization examines the slacks on the inputs of the gates on the worst timing paths and optimizes the timing by swapping nets attached to the input pins, so the net with the least amount of slack is put on the fastest path through the gate without changing the function of the logic.

4. Buffering:
Buffers are inserted in the design to drive a load that is too large for a logic cell to efficiently drive.
If the net is too long then the net is broken and buffers are inserted to improve the transition which will ultimately improve the timing on the data path and reduce the setup violation.
To reduce the hold violations buffers are inserted to add delay on data paths.

5. Cell Sizing:
Cell sizing is the process of assigning a drive strength for a specific cell in the library to a cell instance in the design. If there is a low drive strength cell in the timing critical path then this cell is replaced by a higher drive strength cell to reduce the timing violation.

6. Cloning:
Cell cloning is a method of optimization that decreases a load of a very heavily loaded cell by replicating the cell. Replication is done by connecting an identical cell to the same inputs as the original cell. Cloning clones the cell to divide the fanout load to improve the timing.

7. Logic Restructuring:

Logic restructuring means rearranging logic to meet timing constraints on critical paths of design.

Comments

Popular posts from this blog

Exploring the Role of LEF Files in VLSI Chip Design: A Beginner's Guide

Hello Dear Readers,   Today in this post, I will provide some deep insight into the LEF file role during the VLSI Chip Design process. In VLSI (Very Large Scale Integration) design, a LEF file is a file that contains information about the physical geometry of the standard cells used in a circuit. LEF stands for Library Exchange Format. A standard cell is a pre-designed logic cell that contains a specific function, such as a flip-flop or an AND gate. Standard cells are designed to be easily combinable and scalable to create more complex circuits. The physical geometry of each standard cell is defined in the LEF file. The LEF file contains information such as the width, height, and position of the pins and metal layers of each standard cell. It also contains information about the physical design rules that govern the placement of these cells on the chip. LEF files are important in VLSI design because they enable the interoperability of different design tools from different vend...

Internship - SoC /IP Design at NXP India

Hello Dear Readers, Currently, at NXP India  vacancy for  Internship - SoC /IP Design   role.   We are looking for a Master degree student with Electronics and Communication Engineering, or related field, with an emphasis on SoC design. This is a full-time internship with a duration of about 11-12 months. Job Responsibility: Working with our experienced design team to design state of the art SoC hardware specific segment applications like Automotive, IoT, voice/object recognition, security, smart connectivity and touch sensing . Assisting experienced engineers with End-to-end ownership of SoC Design, Verification and implementation (Physical Design). Design and verify digital and Mixed-signal IPs. Document designs and present results. Job Qualification: Master student in electronic/computer engineering Creative and positive mindset Good knowledge on CMOS technologies Great communication skills, interpersonal skills, teamwork skills and can-do attitude Desire for a ca...

IC Design Engineer at Broadcom

  Hello Dear Readers, Currently, at Broadcom vacancy for an IC Design Engineer role. Job Description: Candidate would be required to work on various phases of SOC physical design activities. The job will include but not limited to block level – floor-planning, partitioning, placement, clock tree synthesis, route, physical verification (LVS/DRC/ERC/Antenna etc). Should be able to meet congestion, timing and area metrics.  Candidate would be required to do equivalence checks, STA, Crosstalk delay analysis, noise analysis, power optimization. Should be able to implement timing and functional ECOs. Should have excellent problem-solving skill to help through congestion resolution and timing closure. Should have experience formal verification and timing analysis and ECO implementation. Experience with tools such as Innovus/Encounter, ICC, Caliber, LEC, Primetime etc is highly desirable. Candidate should be able to work independently and guide other team members. Should be ...