Skip to main content

Design Engineer - STA, SD, Power, PDN at Dew Software

Hello Dear Readers,   Currently at Dew Software Bangalore vacancy for Design Engineer - STA, SD, Power, PDN role. Dew Software, a leading player in the Digital Transformation space, is seeking a skilled Design Engineer specializing in STA (Static Timing Analysis), SD (Signal Integrity), Power, and PDN (Power Delivery Network) to join our team. Working with Fortune 500 companies to support their digital innovation and transformation strategies, the Design Engineer will be responsible for ensuring the integrity and efficiency of digital designs through comprehensive analysis and optimization. Dew Software is dedicated to delivering exceptional outcomes with cutting-edge technologies, and this is an excellent opportunity to contribute to the growth and success of our clients. Responsibilities: Perform STA (Static Timing Analysis) to ensure design meets timing requirements Conduct signal integrity analysis to optimize signal integrity and minimize signal integrity issues Provide power anal

Multiplexer Verilog Code

Hello Dear Readers,

Here I have giving Verilog code of 32-bit Multiplexer which is a common digital system block. A multiplexer selects an input from multiple inputs. The following code implements a 32-bit 2-to-1 multiplexer as well as a 4-to-1 multiplexer using a function. The [31:0] denotes a bus that has 32 bits. So Let's Start it code.

Verilog Code:

1) Multiplexer Using Dataflow Level:

module mux2to1 (a0,a1,s,y); // multiplexer, 32 bits 
 // inputs, 32 bits
input [31:0] a0, a1;    
  // input selection line, 1 bit    
 input s;   
  // output, 32 bits        
output [31:0] y;       
// ternary operator is used so if (s==1) y=a1; else y=a0;    
assign y = s ? a1 : a0;      
endmodule

Now there is also a function facility available in Verilog similar to C language such functions are sections of Verilog code that allow the Digital Designer to write more reusable and maintainable code. Often a function is created when the same operation is done over and over throughout Verilog code. Rather than rewriting code, one can just call the function. This prevents copy and paste errors and allows for more maintainable code: if the behavior of the function changes, it only needs to be updated in one location. One rule about functions is that they cannot have any time delay (# delay, posedge). This is one way in which they differ from tasks. For this reason, functions are used for creating combinational logic. Yes, functions are synthesizable!

Below is a list of rules for functions:

  • Functions can have any number of inputs but only one output (one return value)
  • The order of inputs to a function dictates how it should be wired up when called
  • The return type defaults to one bit unless defined otherwise
  • Functions execute immediately (zero time delay)
  • Functions can call other functions but they cannot call tasks
  • Functions can drive global variables external to the function
  • Variables declared inside a function are local to that function
  • Non-blocking assignment in function is illegal
  • Functions can be automatic 
The following code implements a 32-bit 4-to-1 multiplexer. A 4-to-1 multiplexer selects one input from four inputs and needs a 2-bit selection signal. The assign statement can also be put in above the function block or the below as shown in the below,

2) Multiplexer Using Function:

module mux4to1 (a0,a1,a2,a3,s,y); // 4-to-1 multiplexer, 32-bit
input [31:0] a0, a1, a2, a3; // inputs, 32 bits 
input [1:0] s; // input, 2 bits 
output [31:0] y; // output, 32 bits 
function [31:0] select; // function name (= return value, 32 bits) 
            input [31:0] a0,a1,a2,a3; // notice the order of the input arguments
            input [1:0] s; // notice the order of the input arguments 
            case (s) // cases:
                 2’b00: select = a0; // if (s==0) return value = a0
                 2’b01: select = a1; // if (s==1) return value = a1
                 2’b10: select = a2; // if (s==2) return value = a2 
                 2’b11: select = a3; // if (s==3) return value = a3
            endcase 
endfunction 
assign y = select(a0,a1,a2,a3,s); // call the function with parameters 
endmodule

Thanks For Reading if any doubts write them in the comments I will be giving a reply asap.

Comments

Post a Comment

Popular posts from this blog

Apprenticeship CAI at MediaTek Bangalore

Hello Dear Readers,   Currently at MediaTek Bangalore vacancy for an Apprenticeship CAI role. Job Description: B.Tech degree in Electrical/Electronics Engineering with a strong educational background in Digital circuit design Experience in physical design of high performance design with frequencies > 2 Ghz. Experienced in hierarchical design, budgeting, multiple voltage domains and multiple clock domains. Strong skills with Cadence Encounter. Solid understanding of STA and timing constraints. Experienced in working on advanced process nodes (16nm). Strong expertise in Physical Verification to debug LVS/DRC issues at the block level. Requirement: B.Tech degree in Electrical/Electronics Engineering with strong educational background in Digital circuit design Experience in physical design of high performance design with frequencies > 2 Ghz. Experienced in hierarchical design, budgeting, multiple voltage domains and multiple clock domains. Strong skills with Cadence Encounter. Solid

Power Analysis in the VLSI Chip Design

  Hello Dear Readers,   Today in this series of posts I will provide some deep insight into Power Analysis in the VLSI Chip Design. The power analysis flow calculates (estimates of) the active and static leakage power dissipation of the SoC design. This electrical analysis step utilizes the detailed extraction model of the block and global SoC layouts. The active power estimates depend on the availability of switching factors for all signals in the cell netlist. Representative simulation test cases are applied to the netlist model, and the signal value change data are recorded. The output data from the power analysis flow guide the following SoC tape out release assessments:  Total SoC power specification (average and standby leakage): The specification for SoC power is critical for package selection and is used by end customers for thermal analysis of the product enclosure. In addition to the package technology selection, the SoC power dissipation is used to evaluate the die attach ma

IC Physical Design (PnR) at Ulkasemi

Hello Dear Readers,   Ulkasemi  has a vacancy for an IC Physical Design (PnR) role. Job Overview: As a full-time Trainee Engineer, the individual will be working on IC Physical Design implementation from RTL to GDSII to create design databases ready for manufacturing with a special focus on power, performance & area optimization with next-generation state-of-the-art process technologies. Job Responsibilities: Perform physical design implementation which includes Floor planning, Power Planning, Clock Tree Synthesis, Place and Route, ECO, Logic Equivalence checks Timing analysis, physical & electrical verification, driving the sign-off closure meeting schedule, and design goals Develop flow, methodologies, and automation scripts for various implementation steps Follow the instructions, compile documents, prepare deliverables, and report to the team lead Should remain up to date with the latest technology trends Educational Qualification:   B.Sc/M.Sc   in EEE or equivalent degree