Hello Dear Readers, Cadence Design Systems has a vacancy for a Product Engineer II role. Cadence is a pivotal leader in electronic design, building upon more than 30 years of computational software expertise. The company applies its underlying Intelligent System Design strategy to deliver software, hardware and IP that turn design concepts into reality. Cadence customers are the world’s most innovative companies, delivering extraordinary electronic products from chips to boards to systems for the most dynamic market applications including consumer, hyperscale computing, 5G communications, automotive, aerospace industrial and health. The Cadence Advantage: The opportunity to work on cutting-edge technology in an environment that encourages you to be creative, innovative, and to make an impact. Cadence’s employee-friendly policies focus on the physical and mental well-being of employees, career development, providing opportunities for learning, and celebrating success in recog...
Hello Dear Readers, Today in this post we will discuss how the architecting speed inside will be changing by writing efficient RTL coding. Sophisticated tool optimizations are often not good enough to meet most design constraints if an arbitrary coding style is used. Here we will discuss the first of three primary physical characteristics of a digital design speed and also discuss methods for architectural optimization in an FPGA. There are three primary definitions of speed depending on the context of the problem: throughput, latency, and timing. In the context of processing data in an FPGA, throughput refers to the amount of data that is processed per clock cycle. A common metric for throughput in bits per second. Latency refers to the time between data input and processed data output. The typical metric for latency will be time or clock cycles. Timing refers to the logic delays between sequential elements. When we say a design does not “meet timing,” we mean that the de...