Hello Dear Readers, Today in this post, I will provide some deep insight into the Signal Electromigration (Signal EM): Violations, Examples, and Practical Fixes. 1. Introduction: As technology nodes shrink into the deep‑submicron and nanometer regime (7nm, 5nm, 3nm and beyond), electromigration (EM) has become a first‑order reliability concern—not only for power/ground (PG) networks but also for signal nets. Signal EM failures are often underestimated because signal currents are transient and bidirectional. However, with higher switching activity, tighter metal pitches, thinner wires, and aggressive timing closure, signal EM can cause latent or early‑life failures if not addressed properly. This article explains: What Signal EM is and how it differs from PG EM Typical Signal EM violation scenarios Detailed, practical examples Root causes behind each violation Proven solutions and best practices to fix and prevent Signal EM issues 2. What is Signal Electromigration: El...
Hello Dear Readers, Today, I will explain how to design a Layout in the MAGIC layout tool and how to perform SPICE simulation. CMOS inverters (Complementary NMOSFET Inverters) are some of the most widely used and adaptable MOSFET inverters used in chip design. They operate with very little power loss and at relatively high speed. Furthermore, the CMOS inverter has good logic buffer characteristics, in that, its noise margins in both low and high states are large. A CMOS inverter containing a PMOS and an NMOS transistor connected at the drain and gate terminals, a supply voltage VDD at the PMOS source terminal, and a ground connection at the NMOS source terminal Vin is connected to the gate terminals, and Vout is connected to the drain terminals As shown in Fig.1 is a circuit-level symbol but in the layout-wise internal structure of CMOS is consisted of common P-Type Substrate for building NMOS and N-Well implanted for building PMOS as shown in Fig.2. ...