Hello Dear Readers, Today in this post, I will provide some deep insight into the Signal Electromigration (Signal EM): Violations, Examples, and Practical Fixes. 1. Introduction: As technology nodes shrink into the deep‑submicron and nanometer regime (7nm, 5nm, 3nm and beyond), electromigration (EM) has become a first‑order reliability concern—not only for power/ground (PG) networks but also for signal nets. Signal EM failures are often underestimated because signal currents are transient and bidirectional. However, with higher switching activity, tighter metal pitches, thinner wires, and aggressive timing closure, signal EM can cause latent or early‑life failures if not addressed properly. This article explains: What Signal EM is and how it differs from PG EM Typical Signal EM violation scenarios Detailed, practical examples Root causes behind each violation Proven solutions and best practices to fix and prevent Signal EM issues 2. What is Signal Electromigration: El...
Hello Dear Readers, Here I have designed a 4 tap FIR filter using Verilog languages and some parts of the Python language to just print the input and output samples that are generating Verilog HDL. So Let's see the Code of the complete system. So first of all FIR filter is a system which transfer function has a finite number of impulsive points corresponding to the type of the filters such as high pass, low pass, bandpass, etc... so it has generally two types of structure as shown in the below, FIR Filter Structures: Here I have used the first structure in which first multiply input samples with impulse responses so without delay products is available now we give delays to that data means here we have implemented shifted adder for MAC operation of the digital filter. Verilog Code: module fir_4tap(input Clk,input signed [7:0] Xin,output reg signed [15:0] Yout); //Internal variables. wire signed [7:0] H0,H1,H2,H3; wire signed [15:0] MCM_bl...