Skip to main content

Posts

Showing posts from April, 2021

RTL Design Engineer at Skyroot Aerospace

Hello, Dear Readers, Skyroot Aerospace has a vacancy for the RTL Design Engineer role. About Skyroot Aerospace: A cutting-edge startup founded by ex-ISRO scientists. Dedicated to affordable space access, we're rewriting aerospace technology rules. Our dynamic team fosters inventiveness, collaboration, and relentless excellence. Join us on a transformative journey to redefine space possibilities. Welcome to the forefront of space innovation with Skyroot Aerospace! Purpose of role: Understand architectural requirements and Design micro-architecture, implement design blocks using VHDL/Verilog for FPGA based Avionics packages for orbital launch vehicles and ground infrastructure. Job Requirements: 2+ Years of RTL and system design experience. Strong knowledge on Digital System Design (DSD). Strong knowledge of RTL/SoC design/integration with VHDL/Verilog. Strong knowledge in problem solving and debugging skills. Ability to understand architectural requirements and Design micro-archite...

Carry Lookahead Adder Design And Implementation of Generic Parametrized Adder Using Verilog HDL

  Hello Dear Readers, Today In this post I have designed a carry-lookahead adder design and implemented its parametrized version using Verilog HDL and analysis that design for the desire output. First of all, I have designed CLA based on the theory described in the below video of the Neso Academy.       Verilog Code: module add (a, b, c, g, p, s); // adder and g, p input a, b, c; // inputs: a, b, c; output g, p, s; // outputs: g, p, s; assign s=a ^ b ^ c; // output: sum of inputs assign g = a & b; // output: carry generator assign p = a | b; // output: carry propagator endmodule module gp (g,p,c_in,g_out,p_out,c_out); // carry generator, carry propagator input [1:0] g, p; // lower level 2-set of g, p input c_in; // lower level carry_in output g_out,p_out,c_out; // higher level g, p, carry_out assign g_out = g[1] | p[1] & g[0]; // higher level carry generator assign p_out = p[1] & p[0]; // higher level carry propagator assign c_out = g[0] | p[0] & c_in...