Skip to main content

Posts

Showing posts from April, 2021

Physical Design Methodology Engineer at Texas Instruments

  Hello Dear Readers, Texas Instruments Bangalore has a vacancy for the Physical Design Engineer role. We need an Physical Design Methodology Engineer to join our ATD team. The candidate should have a strong background in back-end design of ASIC/SoC chips. The ideal candidate will have a bachelor’s or master’s degree in Electrical Engineering or a related field. Requirements: 1 - 2 Years of experience in physical design Bachelor’s or master’s degree in Electrical/Electronics Engineering or a related field Strong understanding of physical design principles Must know the basics of floorplan, placement, CTS, routing, ECO, Physical Verification Proficiency in back-end design tools, such as Cadence Genus/Innovus/Tempus/Voltus Excellent problem-solving skills and attention to detail Effective communication and collaboration skills Responsibilities: Synthesis to GDSII Perform full Physical design flow and its verification Work closely with Digital Design and DFT engineers Ensure...

Carry Lookahead Adder Design And Implementation of Generic Parametrized Adder Using Verilog HDL

  Hello Dear Readers, Today In this post I have designed a carry-lookahead adder design and implemented its parametrized version using Verilog HDL and analysis that design for the desire output. First of all, I have designed CLA based on the theory described in the below video of the Neso Academy.       Verilog Code: module add (a, b, c, g, p, s); // adder and g, p input a, b, c; // inputs: a, b, c; output g, p, s; // outputs: g, p, s; assign s=a ^ b ^ c; // output: sum of inputs assign g = a & b; // output: carry generator assign p = a | b; // output: carry propagator endmodule module gp (g,p,c_in,g_out,p_out,c_out); // carry generator, carry propagator input [1:0] g, p; // lower level 2-set of g, p input c_in; // lower level carry_in output g_out,p_out,c_out; // higher level g, p, carry_out assign g_out = g[1] | p[1] & g[0]; // higher level carry generator assign p_out = p[1] & p[0]; // higher level carry propagator assign c_out = g[0] | p[0] & c_in...