Skip to main content

Posts

Showing posts from October, 2021

Physical Design Methodology Engineer at Texas Instruments

  Hello Dear Readers, Texas Instruments Bangalore has a vacancy for the Physical Design Engineer role. We need an Physical Design Methodology Engineer to join our ATD team. The candidate should have a strong background in back-end design of ASIC/SoC chips. The ideal candidate will have a bachelor’s or master’s degree in Electrical Engineering or a related field. Requirements: 1 - 2 Years of experience in physical design Bachelor’s or master’s degree in Electrical/Electronics Engineering or a related field Strong understanding of physical design principles Must know the basics of floorplan, placement, CTS, routing, ECO, Physical Verification Proficiency in back-end design tools, such as Cadence Genus/Innovus/Tempus/Voltus Excellent problem-solving skills and attention to detail Effective communication and collaboration skills Responsibilities: Synthesis to GDSII Perform full Physical design flow and its verification Work closely with Digital Design and DFT engineers Ensure...

Architecting Speed in FPGA

  Hello Dear Readers,   Today in this post we will discuss how the architecting speed inside will be changing by writing efficient RTL coding. Sophisticated tool optimizations are often not good enough to meet most design constraints if an arbitrary coding style is used. Here we will discuss the first of three primary physical characteristics of a digital design speed and also discuss methods for architectural optimization in an FPGA. There are three primary definitions of speed depending on the context of the problem: throughput, latency, and timing. In the context of processing data in an FPGA, throughput refers to the amount of data that is processed per clock cycle. A common metric for throughput in bits per second. Latency refers to the time between data input and processed data output. The typical metric for latency will be time or clock cycles. Timing refers to the logic delays between sequential elements. When we say a design does not “meet timing,” we mean that the de...