Skip to main content

Posts

Showing posts with the label My Designed Project

Design Engineer - STA, SD, Power, PDN at Dew Software

Hello Dear Readers,   Currently at Dew Software Bangalore vacancy for Design Engineer - STA, SD, Power, PDN role. Dew Software, a leading player in the Digital Transformation space, is seeking a skilled Design Engineer specializing in STA (Static Timing Analysis), SD (Signal Integrity), Power, and PDN (Power Delivery Network) to join our team. Working with Fortune 500 companies to support their digital innovation and transformation strategies, the Design Engineer will be responsible for ensuring the integrity and efficiency of digital designs through comprehensive analysis and optimization. Dew Software is dedicated to delivering exceptional outcomes with cutting-edge technologies, and this is an excellent opportunity to contribute to the growth and success of our clients. Responsibilities: Perform STA (Static Timing Analysis) to ensure design meets timing requirements Conduct signal integrity analysis to optimize signal integrity and minimize signal integrity issues Provide power anal

Design of the Single Cycle Microprocessor Using Verilog HDL

Hello Dear Readers, Here I have uploaded my designed single cycle 8-bit CISC microprocessor using Verilog HDL. So Let's see and try your own as per your specification.   First of all, as we know CISC microprocessor has separate instruction memory and data memory so here I have make two text file for that and then designed one by one block of the microprocessor such as clock generation, ALU(Arithmetic Logical Unit), File reading as well as writing back, ...etc. Verilog Code: module microprocessor1(); reg reset; reg clock; reg [7:0] Dmem[0:255];// data memory array for the data file stored reg [31:0] Imem[0:255];// instruction memory array for the instruction stored reg [7:0] pc; // 8-bit program counter reg [31:0] instruction; // 32-bit Instruction Register reg [7:0] opcode; // 8-bit opcode reg [7:0] destAddr; // 8-bit Destination Address reg [7:0] src1Addr; // 8-bit Source Address #1 reg [7:0] src2Addr; // 8-bit Source Address #2 reg [7:0] src1Data; // 8-bit Source Data #1 reg [7: